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Abstract4

Derivatives of eigenvalues and eigenvectors with respect to design variables
are required for gradient-based optimization in many engineering design
problems. However, for the generalized and standard eigenvalue problems
with general complex and non-Hermitian coefficient matrices, no method
can accurately compute the eigenvalue and eigenvector derivatives while re-
maining efficient for large numbers of design variables. In this paper, we
develop an adjoint method to compute complex eigenvalue and eigenvector
derivatives with machine precision. For the special case when only the eigen-
value derivative is required, we propose a reverse algorithmic differentiation
(RAD) formula using a newly developed dot product identity for complex
functions. We verify the proposed method against the finite differences (FD)
for a simple algebraic example with a 3-by-3 complex non-Hermitian matrix
and a plane Poiseulle flow stability problem that is modeled as a generalized
eigenvalue problem. The adjoint method is demonstrated to scale well with
the number of design variables, matching the FD reference to about 5 to 7
digits.
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1. Introduction8

Eigenvalue and eigenvectors are essential metrics that can be used for9

dynamic system behavior characterization. They are widely used in en-10

gineering applications, such as structural dynamics with mode superposi-11
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tion [1], aeroelastic simulation [2, 3, 4, 5], laminar-turbulence transition pre-12

diction [6, 7, 8, 9, 10], buffet-onset prediction [11, 12], reacting flow insta-13

bility analysis [13], turbine blade mistuning prediction [14, 15, 16, 17], and14

dynamic system identification [18, 19, 20]. There are different types of eigen-15

value problems encountered in practice. In this research, we consider two16

types of eigenvalue problems that are frequently encountered: (1) Eigenvalue17

problems of a general complex matrix and (2) generalized eigenvalue prob-18

lems with complex matrices. For example, buffet onset [11, 12] and dynamic19

system identification [18, 19, 20] belong to the first category; structural mode20

superposition [1] and laminar-turbulence transition [6, 7, 8, 9, 10] belong to21

the second category. Other types of eigenvalue problems, such as quadratic22

eigenvalue problems [21] and other nonlinear eigenvalue problems [22], are23

out of the scope of the paper. In some cases, the coefficient matrices are real24

and symmetric, e.g., structural mode superposition [1], but in more general25

cases, the matrices are complex and not Hermitian, e.g., laminar-turbulence26

transition [6, 7, 8, 9, 10]. Problems whose solution involved repeated eigen-27

values are beyond the scope of this paper.28

Eigenvalues and eigenvectors derivative with respect to design variables29

are important information required for gradient-based optimization in many30

aircraft design related field, e.g., flutter suppression [23, 24], aerodynamic31

drag reduction optimization with a laminar-turbulent transition model [10],32

and structural optimization [25, 26, 27, 28, 29, 30]. Thus, it is crucial to33

compute the derivatives of eigenvalues and eigenvectors accurately and ef-34

ficiently. For a more extensive review of the field, we refer the reader to a35

recent review paper by Lin et al. [31].36

Several methods exist to compute derivatives, such as finite differences37

(FD), complex step (CS), algorithmic differentiation (AD), direct method,38

and adjoint method (see Martins and Ning [32, Chapter 6]), but they differ39

in the level of accuracy and efficiency. In terms of efficiency, methods either40

scale well with the number of outputs (functions of interest to be differenti-41

ated, eigenvalues and eigenvectors in this case) or with the number of inputs42

(design variables), but unlikely both [33],[32, Chapter 6].43

While FD is prone to truncation and subtraction cancellation errors, CS44

does not suffer from these limitations (assuming small enough step-size) and45

can compute the derivative to machine precision [34]. Both FD and CS re-46

quire little effort to implement, due to their black-box-like application. How-47

ever, their computational cost scales proportional to the number of inputs,48

with CS being more costly due to the complex arithmetic. Thus, they are49
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not feasible for many high-fidelity applications with a large number of design50

variables.51

Alternatively, we can use AD to compute the derivative. AD is a well-52

known approach to differentiate a program based on a systematic application53

of chain rule [32, Chapter 6]. AD can be implemented by transforming the54

source code line-by-line [35], or, for some fundamental matrix operations,55

such as matrix products, inversion, and eigenvalue and eigenvector computa-56

tion, analytic AD formulas can be conveniently derived Dwyer and Macphail57

[36], Giles [37]. The AD based on the analytic formula has the advantage that58

the derivatives can then be computed using the optimized libraries without59

differentiating the underlying library source code. AD can also be classified60

into (1) forward algorithmic differentiation (FAD) and (2) reverse algorith-61

mic differentiation (RAD) based on the order in which the chain rule is ap-62

plied. FAD computes the derivatives by applying the chain rule in a forward63

sequence of operations propagating from the inputs to the outputs; RAD64

computes the derivatives by applying the chain rule backward, starting with65

the outputs and ending with the inputs. The computational cost of FAD is66

proportional to the number of inputs, while the computational cost of RAD67

is proportional to the number of outputs.68

Finally, besides the explicit analytic methods such as AD, we can also use69

implicit analytic methods. There are two approaches in the implicit analytic70

methods category: direct and adjoint [32, Chapter 6]. The efficiency of the71

direct and adjoint approaches depends on the number of inputs and outputs.72

When the number of inputs is less than the number of outputs, the direct73

method is preferable. On the other hand, the adjoint method is more efficient74

when the number of inputs is greater than the number of outputs.75

Any of the derivative computation methods mentioned previously can76

be applied to eigenvalue and eigenvector problems. Previous developments77

have focused on methods that scale well with respect to the number of out-78

puts [25, 26, 27, 28, 38, 29, 39, 30, 40, 41, 19, 42, 43, 44] using either forward79

AD or direct method. For example, the Nelson method [28] can be cate-80

gorized as a direct method and [25] is a FAD-based method. However, in81

many practical design problems, there are many more design variables (usu-82

ally O(100 − 1000)) than functions of interest (usually O(10)) [45, 46, 47].83

Using the direct method to compute derivatives for these PDE-constrained84

optimization problems can be prohibitively expensive. Thus, it is crucial to85

develop methods that can compute derivatives accurately and scale with the86

number of design variables.87
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As discussed before, there are mainly two methods that scale well with88

the number of inputs: (1) the adjoint method proposed by Lee [48], and89

(2) the RAD method proposed by Giles [37], He et al. [49], Jonsson et al.90

[23]. The RAD methods can be further decomposed into two categories91

according to whether it applies an iterative or a projection-based scheme.92

For the projection-based method, we can classify approaches according to93

whether a full basis is applied or not. Thus, we have three variations of the94

RAD method, i.e., (2.a) the RAD with a full basis proposed by Giles [37],95

(2.b) the RAD with an incomplete basis (the modal-based method) proposed96

by He et al. [49], and (3.a) the RAD with an iterative method proposed97

by Jonsson et al. [23]. Among all the approaches, the adjoint method and98

the RAD with a full basis can achieve machine precision. Lee [48] developed99

an adjoint derivative formulation for the generalized eigenvalue problem with100

real and symmetric matrices. Using this formulation, they computed the101

structural mode shape derivatives with machine precision. However, the102

coefficient matrices encountered in Lee [48] are complex and non-Hermitian103

in many applications. Different adjoint methods have been proposed for the104

general complex matrices by several authors [50, 51, 26, 39]. However, the105

adjoint method was named after the adjugate matrix (or the classic adjoint106

matrix ) and is indeed a modal-based method, as discussed next (see [39]).107

Its computational cost scales with the number of design variables. In this108

paper, we extend the adjoint method proposed by Lee [48] to eigenvalue109

problems and generalized eigenvalue problems with general complex and non-110

Hermitian matrices.111

Giles [37] derived an analytic RAD formula for eigenvalue problems using112

the dot product identity. The formula requires the complete knowledge of the113

eigenvectors. As mentioned before, this method can achieve machine preci-114

sion. However, for problems with large dimensions, the computational cost of115

computing all eigenvalue and eigenvectors is prohibitive. On the other hand,116

if only the eigenvalue derivative is computed, the method can compute the117

derivative accurately if the corresponding eigenvectors are known. Following118

Giles [37], in this paper, we develop a RAD formula for the eigenvalue by119

extending the dot product identity with real matrices to complex matrices.120

Also, we compare and relate the adjoint method and the RAD formula in121

eigenvalue derivative computation.122

Besides the accurate method developed by Giles [37], we can also approx-123

imate the derivatives of eigenvectors using a small set of known eigenvectors124

as proposed by Fox and Kapoor [25]. This method is known as the modal-125
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based method. We can develop RAD formulas based on the modal-based126

method [49]. To remedy the truncation error Lim et al. [29], Wang [30]127

proposed a correction that approximates the higher-order terms based on128

spectral decomposition. Leveraging this correction method, He et al. [49]129

proposed RAD formulas to compute eigenvalue and eigenvector derivative130

that scales favorably with the number of design variables for the generalized131

eigenvalue problem with positive definite coefficient matrices. They demon-132

strated that with about six basis vectors, the relative error of the derivatives133

is about 10−6. However, when more basis vectors were added, the relative134

error reduction plateaued somewhere between 10−6 to 10−7.135

The RAD method can also be used with an iterative eigenvalue prob-136

lem solver, such as a Lanczos method [52] based solver [23]. However, the137

implementation of this method requires the knowledge of AD tools, such as138

Tapenade [53]. While transforming highly optimized linear algebra libraries139

(e.g., LAPACK) is possible, it is tedious and requires significant implemen-140

tation effort. Its success depends on the transformation tool used and the141

source code programming paradigm. Furthermore, it is likely that the trans-142

formed code performance is sub-optimal compared to the original routine143

both in terms of speed and memory usage.144

Our contribution in this paper is summarized as follows: (1) we develop an145

adjoint equation for the eigenvalue problem with a general complex matrix,146

(2) we develop an adjoint equation for the generalized eigenvalue problem147

with complex matrices, (3) we extend the dot product identity to complex148

variables, (4) using the dot product identity for complex functions, we find149

a new formula for eigenvalue derivative computation based on RAD, and150

(5) we discuss the relationship between the RAD and adjoint methods. The151

proposed methods can compute the derivative to machine precision, can be152

implemented easily, scale favorably with the number of design variables, and153

can be used in gradient-based optimization.154

The paper is organized as follows. In Section 2, we present the governing155

equation for the eigenvalue problems involving complex eigenvectors and the156

proposed adjoint method. The adjoint method is then extended to the gen-157

eralized eigenvalue problems in Section 3. In Section 3, we develop a RAD158

formula when the function of interest is only the eigenvalue, using our newly159

proposed dot product identity for complex functions. Then, in Section 4, we160

present two test cases to verify the formulas we obtained in Section 2 and161

Section 3. The test cases include a simple algebraic problem with a complex162

3-by-3 coefficient matrix and a plane Poiseulle flow stability problem mod-163
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eled as a generalized eigenvalue problem. Finally, we present our conclusions164

in Section 5.165

2. Eigenvalue problem166

In this section, we discuss the eigenvalue problem with a complex coef-167

ficient matrix and the proposed adjoint method to compute eigenvalue or168

eigenvector derivatives. This is a special case of the generalized eigenvalue169

problem we present in Section 3. In Section 2.1, we introduce the eigenvalue170

residual form, followed by the derivation of adjoint method in Section 2.2171

presenting. Finally, Section 2.3 presents the RAD formula for derivatives of172

eigenvalues only.173

2.1. Governing equation174

The eigenvalue problem is given by175

Aφφφ = λφφφ, (1)

where the coefficient matrix is in general a complex matrix, A ∈ Cn×n, the176

eigenvector is a complex vector, φφφ ∈ Cn, the eigenvalue is a complex scalar,177

λ ∈ C, and n is the dimension of the coefficient matrix. We assume that178

all eigenvalues are distinct, that is, there are no repeated eigenvalues. In179

practice, the repeated eigenvalues are usually due to some spatial symmetry180

[31]. Thus, it is less common compared with the case that all eigenvalues are181

distinct. Given these definitions and the assumption, we can prove that the182

eigenvalue is analytic as a function of matrix entries (see Appendix A for183

the proof).184

However, the eigenvalue problem given in Eq. (1) cannot determine one185

unique eigenvector given an eigenvalue. This is because the eigenvector re-186

mains an eigenvector after scaling and rotating in the complex space. Sup-187

pose that λ,φφφ is a complex eigenpair of a matrix A. By applying stretching188

and rotation about the origin in the complex plane, we obtain the following189

equation190

A
(
αφφφeiθ

)
= λ

(
αφφφeiθ

)
, (2)

where α ∈ R is the scaling factor, and θ ∈ R is the rotation angle. Here, αφφφeiθ191

is also an eigenvector. An illustration of scaling and rotating of a complex192

eigenvector is shown in Fig. 1.193
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Figure 1: Scaling and rotation of a complex eigenvector. The black arrows indicate the
original eigenvector φφφ = (φ,1, φ,2). The orange lines show φφφ after scaling by α. The gray
lines show φφφ after a rotation by θ. l is the norm of φj,2.

Thus, to obtain one unique solution we need to constrain the eigenvector194

to a certain length and angle. The norm is constrained by195

φφφ∗φφφ = 1, (3)

where (·)∗ is a conjugate transpose operator. There are many ways to con-196

strain the angle of a complex eigenvector. One approach is to make the entry197

with the maximum norm be a positive real number. We can express these198

conditions as199

Im (φφφ,k) = 0

Re (φφφ,k) > 0

k = argmaxj||φφφ,j||2
, (4)

where j is the entry index of the eigenvector.200

To summarize, solving the following equation gives a unique complex201

eigenvector202

Aφφφ = λφφφ

φφφ∗φφφ = 1

Im (φφφ,k) = 0

Re (φφφ,k) > 0

k = argmaxj||φφφ,j||2

. (5)

If multiple entries have the same norm, but they are not equal with each203
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other, we set the value of k to the smallest entry index.204

Equation (5) is written using complex numbers. However, we can expand205

and split the complex equation into two real equations, namely the real and206

imaginary components of the original equation. The resulting system of207

equations can then be written in terms of real numbers only as208

r(w) = 0, (6)

where r(w) and w are defined as209

r(w) =


rmain,r

rmain,i

rm
rp

 =


Arφφφr −Aiφφφi − λrφφφr + λiφφφi
Aiφφφr + Arφφφi − λiφφφr − λrφφφi

φφφᵀrφφφr + φφφᵀiφφφi − 1
eᵀkφφφi

 , w =


φφφr
φφφi
λr
λi

 , (7)

where the subscript “main” distinguishes the eigenvalue equations from the210

additional phase and magnitude equations, the subscription r and i repre-211

sents real and imaginary parts, respectively, the subscription m and p repre-212

sents the magnitude and the phase, respectively, and the state variable w is213

obtained by stacking the eigenvector and the eigenvalue together.214

2.2. Adjoint method215

Now we compute the derivative of a real function f(φφφ, λ) with respect216

to the design variables x where the matrix A(x) is directly dependent on x.217

If the function f is otherwise complex, we can compute its real and imagi-218

nary component derivatives separately following a similar routine. Using the219

notation of [32, Sec. 6.7], we formulate the total derivative of teh adjoint220

method as221

df

dx
=
∂f

∂x
−ψψψᵀ ∂r

∂x
, (8)

where the partial derivatives are provided and the vector of adjoint variables222

ψψψ is obtained by solving the adjoint equation223

∂r

∂w

ᵀ

ψψψ =
∂f

∂w

ᵀ

, (9)
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which is a linear system. In our case, this linear system can be expanded as224

∂r

∂w

ᵀ

ψψψ =
∂f

∂w

ᵀ

⇔


Ar − λrI −Ai + λiI −φφφr φφφi
Ai − λiI Ar − λrI −φφφi −φφφr

2φφφᵀr 2φφφᵀi 0 0
0 eᵀk 0 0


ᵀ 
ψψψmain,r

ψψψmain,i

ψψψm
ψψψp

 =
∂f

∂w

ᵀ

.
(10)

After solving these adjoint equations (10), we evaluate (∂r/∂x)ᵀψψψ, which225

can be further decomposed using the chain rule as226

∂r

∂x

ᵀ

ψψψ =
∂Ar

∂x

ᵀ ∂r

∂Ar

ᵀ

ψψψ +
∂Ai

∂x

ᵀ ∂r

∂Ai

ᵀ

ψψψ, (11)

where ∂Ar/∂x and ∂Ai/∂x are problem-specific in the sense that they de-227

pend on the design variables of the problem and usually straight-forward to228

evaluate; while (∂r/∂Ar)
ᵀψψψ and (∂r/∂Ai)

ᵀψψψ are general. The derivative229

expression here involves matrices, e.g., (∂r/∂Ar)
ᵀψψψ that involves tensor-230

vector product and may cause confusion. To avoid that, we assume that the231

derivative is computed after the matrices are flattened as vectors, and in the232

final result, the vectors are mapped back to the original matrix sizes. This233

operation is defined in Appendix B. We can expand these two terms as234

∂r

∂Ar

ᵀ

ψψψ = ψψψmain,rφφφ
ᵀ
r +ψψψmain,iφφφ

ᵀ
i

∂r

∂Ai

ᵀ

ψψψ = −ψψψmain,rφφφ
ᵀ
i +ψψψmain,iφφφ

ᵀ
r ,

(12)

where the adjoint vector can be a complex vector. These equations are235

derived in Appendix G.236

Finally, if we want to compute the derivative of the eigenvalue and eigen-237

vector with respect to the entries of the coefficient matrix A, we can use the238

total derivative equation (8) with A in place of x.239

2.3. RAD formula to computing derivatives of eigenvalues240

Before we proceed with the analytic formula, we define the forward (�̇)241

and reverse seeds (�). Consider a computation with one input, sI , and242

one output, sO. Suppose matrix A is some intermediate variable within the243
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computation, then Ȧ denotes the derivative of A with respect to sI and A244

denotes the derivative of sO with respect to elements of A.245

When we only need the eigenvalue derivatives, a more efficent method246

can be applied. The FAD form is given by Magnus [38] as247

φ̃φφ
∗
Ȧφφφ = λ̇φ̃φφ

∗
φφφ. (13)

where φ̃φφ is a left eigenvector corresponding with the complex conjugate eigen-248

value λ∗. The left eigenvector satisfies the following equation:249

A∗φ̃φφ = λ∗φ̃φφ. (14)

We derive the RAD formula using proposed complex dot product identity250

presented in Appendix D. The detailed derivation is included in Appendix251

E. The results can be summarized as252

dλr
dAr

= Re

(
φ̃φφφφφ∗

φφφ∗φ̃φφ

)
,

dλr
dAi

= Im

(
φ̃φφφφφ∗

φφφ∗φ̃φφ

)
,

dλi
dAr

= − dλr
dAi

,

dλi
dAi

=
dλr
dAr

,

(15)

The last two equations are due to the Cauchy–Riemann conditions (D.6)253

for an analytic function. In Appendix F we explore the relation between254

Eq. (12) and Eq. (15). When an eigenvalue derivative is sought, Eq. (15) is255

cheaper to evaluate instead of using Eq. (12). Thus, we recommend using256

Eq. (15).257

3. Generalized eigenvalue problem258

The generalized eigenvalue problems are frequently encountered in engi-259

neering applications. In this section, we extend the adjoint method to this260

class of problems.261
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3.1. Governing equation262

The generalized eigenvalue problem is defined as follows:263

Kφφφ = λMφφφ (16)

where K and M are complex matrices. The governing equation for the264

generalized eigenvalue problem is as follows:265

Kφφφ = λMφφφ

φφφ∗φφφ = 1

Im (φφφ,k) = 0

Re (φφφ,k) > 0

k = argmaxj||φφφ,j||2

, (17)

There are other ways to normalize the eigenvectors. For example, a com-266

monly used normalization functions yields267

φφφᵀMφφφ = 1. (18)

Different normalization conditions can be taken into account by replacing268

the normalization condition in Eq. (17).269

Expanding Eq. (17) to separate real and imaginary components, we obtain270

r(w) =


rmain,r

rmain,i

rm
rp



=


(Kr − λrMr + λiMi)φφφr + (−Ki + λiMr + λrMi)φφφi
(Ki − λiMr − λrMi)φφφr + (Kr − λrMr + λiMi)φφφi

φφφᵀrφφφr + φφφᵀiφφφi − 1
eᵀkφφφi

 ,
(19)

where271

w =


φφφr
φφφi
λr
λi

 . (20)
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3.2. Adjoint method272

The total derivative equation (8) still holds. However, the adjoint equa-273

tion for the generalized eigenvalue problem is different and is as follows:274

∂r

∂w

ᵀ

ψψψ =
∂f

∂w

ᵀ

⇔


Kr − λrMr + λiMi −Ki + λiMr + λrMi −Mrφφφr + Miφφφi Miφφφr + Mrφφφi
Ki − λiMr − λrMi Kr − λrMr + λiMi −Mrφφφi −Miφφφr Miφφφi −Mrφφφr

2φφφᵀr 2φφφᵀi 0 0
0 eᵀk 0 0


ᵀ

·


ψψψmain,r

ψψψmain,i

ψψψm

ψψψp

 =
∂f

∂w

ᵀ

.

(21)

Also, the (∂rᵀ/∂x)ψψψ is different from that of Eq. (11). The (∂rᵀ/∂x)ψψψ275

term is given by276

∂r

∂x

ᵀ

ψψψ =
∂Mr

∂x

ᵀ ∂r

∂Mr

ᵀ

ψψψ+
∂Mi

∂x

ᵀ ∂r

∂Mi

ᵀ

ψψψ+
∂Kr

∂x

ᵀ ∂r

∂Kr

ᵀ

ψψψ+
∂Ki

∂x

ᵀ ∂r

∂Ki

ᵀ

ψψψ, (22)

where ∂Kr/∂x, ∂Ki/∂x, ∂Mr/∂x, and ∂Mi/∂x are problem-specific and277

usually straight-forward to evaluate; while (∂r/∂Kr)
ᵀψψψ, (∂r/∂Ki)

ᵀψψψ, (∂r/∂Mr)
ᵀψψψ,278

and (∂r/∂Mi)
ᵀψψψ are general. As before for the standard eigenvalue prob-279

lem, the derivative expressions involve matrices and are treated as defined in280

Appendix B. The final expressions are281

∂r

∂Kr

ᵀ

ψψψ = ψψψmain,rφφφ
ᵀ
r +ψψψmain,iφφφ

ᵀ
i ,

∂r

∂Ki

ᵀ

ψψψ = −ψψψmain,rφφφ
ᵀ
i +ψψψmain,iφφφ

ᵀ
r ,

∂r

∂Mr

ᵀ

ψψψ = ψψψmain,r (−λrφφφr + λiφφφi)
ᵀ +ψψψmain,i (−λiφφφr − λrφφφi)ᵀ ,

∂r

∂Mi

ᵀ

ψψψ = ψψψmain,r (λiφφφr + λrφφφi)
ᵀ +ψψψmain,i (−λrφφφr + λiφφφi)

ᵀ .

(23)

The detailed derivation is similar to Eq. (12), which is presented in Appendix282

G.283
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4. Numerical results284

In this section, we verify the proposed adjoint methods with FD using285

two test cases. The first case is a simple algebraic problem with a 3× 3 ma-286

trix, where we demonstrate and verify the adjoint and the RAD expressions.287

The second case involves the more complicated Poiseuille flow modeled with288

Orr–Sommerfeld and Squire’s equation, which we used to verify the adjoint289

expressions for generalized eigenvalue problems.290

4.1. Eigenvalue problem test case: the eigenvalue problem adjoint method291

verification292

Consider the 3× 3 complex matrix,293

A = Ar + iAi, =

−1.01 0.86 −4.60
3.98 0.53 −7.04
3.30 8.26 −3.89

+ i

0.30 0.79 5.47
7.21 1.90 0.58
3.42 8.97 0.30

 . (24)

The matrix values are arbitrarily chosen by generating random numbers in294

the range of (−10, 10). The first eigenpair φφφ, λ of this system is295

φφφ = φφφr + iφφφi =

0.378298320174238
0.448628978890548
0.703251318380440

+ i

0.211732867893793
0.340924032744271

0

 ,
λ = λr + iλi = −2.22367558699108 + i12.859852984709278.

(25)

Moreover, the full set of eigenvalues is296

ΛΛΛ =

−2.22367558699108 + i12.85985298470927
−5.81588878300751− i2.05104471148432
3.66956436999860− i8.30880827322497

 , (26)

where ΛΛΛ is a vector contains all eigenvalues. No repeated eigenvalues show297

up in this case.298

The function of interest f is defined as299

f = fr + ifi. (27)

We choose a linear function of interest, involving the first eigenpair (φφφ, λ),300

f = cᵀ1φφφ+ c2λ, (28)
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where the constants c1 and c2 are defined as301

c1 = c1r + ic1i =

0.16
0.53
0.11

+ i

0.78
0.11
0.77

 ,
c2 = c2r + ic2i = 1.0 + i0.5,

(29)

Similar to the coefficient matrices, the value of each entry is arbitrarily chosen302

by generating random numbers in the range of (−10, 10). Expanding the303

function of interest terms of real and imaginary components we have304

fr = cᵀ1rφφφr − cᵀ1iφφφi + c2rλr − c2iλi,
fi = cᵀ1rφφφi + cᵀ1iφφφr + c2rλi + c2iλr.

(30)

The goal is to compute df/ dA, in particular dfr/ dAr, dfr/ dAi, dfi/ dAr,305

and dfi/ dAi.306

We compute the derivative using the proposed adjoint method. First, we307

form the RHS of the adjoint equation (10) and obtain,308

dfr
dw

=


c1r
−c1i
c2r
−c2i

 , dfi
dw

=


c1i
c1r
c2i
c2r

 . (31)

Then, solving for the adjoint variables using Eq. (10) and we apply the fol-309

lowing equations to compute the total derivatives310

dfr
dAr

= − ∂r

∂Ar

ᵀ

ψψψr,

dfr
dAi

= − ∂r

∂Ai

ᵀ

ψψψr,

dfi
dAr

= − ∂r

∂Ar

ᵀ

ψψψi,

dfi
dAi

= − ∂r

∂Ai

ᵀ

ψψψi,

(32)

where ψψψr and ψψψi are adjoint vectors for fr and fi, respectively. Finally, ap-311

plying the first row from Eq. (8), Eq. (11) and Eq. (12), we can compute312

the derivatives. We tabulated the first row of the derivative matrix in Ta-313
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ble 1. We note that the most computational expensive steps are the adjoint314

equation solutions for ψψψr and ψψψi.

Table 1: Verification of the adjoint derivatives with FD

Type Index Adjoint FD

dfr/dAr (1, 1) 0.315879228919551 0.315879214340953
dfr/dAr (1, 2) 0.408674084806795 0.408674075913495
dfr/dAr (1, 3) 0.437931392924164 0.437931392482938

dfr/dAi (1, 1) −0.011401200176911 −0.011401210642248
dfr/dAi (1, 2) 0.039666848554661 0.039666858242526
dfr/dAi (1, 3) −0.254254544722728 −0.254254533871290

dfi/dAr (1, 1) 0.011625919400695 0.011625894913436
dfi/dAr (1, 2) −0.042150227409544 −0.042150237078431
dfi/dAr (1, 3) 0.266721810617628 0.266721789543567

dfi/dAi (1, 1) 0.300544793153509 0.300544812148473
dfi/dAi (1, 2) 0.388896314270688 0.388896319591936
dfi/dAi (1, 3) 0.416402795592258 0.416402807346117

315

Now we compute the derivative using the FD. We compute the derivative316

df/dA using FD with step size ε = 10−6 using the following formulas:317

dfr
dAr,pq

= Re

(
f(A + εEpq)− f(A)

ε

)
,

dfr
dAi,pq

= Im

(
f(A + iεEpq)− f(A)

ε

)
,

dfi
dAr,pq

= Re

(
f(A + εEpq)− f(A)

ε

)
,

dfi
dAi,pq

= Im

(
f(A + iεEpq)− f(A)

ε

)
,

(33)

where Epq is a matrix with a single entry set to one (indexed as (p, q)) and318

all other entries are zero. The underlining in Table 1 indicates digits that319

differ from those computed with the adjoint method. Overall, 5 to 7 digits320

match between the FD and the adjoint method. Thus, it demonstrates that321

the adjoint method can be used to compute the eigenvalue and eigenvector322
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derivatives accurately. However, in comparison with the adjoint method, for323

each entry (p, q), the eigenpair needs to be computed again. So in total, this324

requires solving an eigenvalue problem for N ×N times, where N ×N is the325

matrix dimension. Compared with the adjoint equation solutions, the FD326

requires many more operations.327

4.2. Eigenvalue problem test case: a simple algebraic problem for the RAD328

formula verification329

In this section, we verify the proposed RAD formula (15) for eigen-330

value derivative computation. We reuse the coefficient matrix A defined331

in Eq. (24) and compute the eigenvalue derivative using the RAD and the332

adjoint method.333

Using the RAD formula defined by Eq. (15), we computed the derivatives334

listed in Table 2. We also computed the derivative using the adjoint method335

(8), (10), where the differences are highlighted by underlines. Overall, the336

results match with machine precision. This is consistent with the fact that337

the RAD and the adjoint method are equivalent. Both are accurate and338

are not subject to the errors involved in FD approximations. Finally, we339

compute the derivatives using FD. Similar to the adjoint method results,340

the differing digits are highlighted with underlines. Overall, 6 to 8 digits341

match between the finite difference and the adjoint method. As discussed342

before, the differences are caused by the errors involved FD approximations.343

Moreover, as we discussed before, the Cauchy–Riemann condition holds here344

because the eigenvalues are distinct. This is verified in the table.345

4.3. Generalized eigenvalue test case: the plane Poiseuille flow problem346

This example is derived from an example in the textbook by Schmid and347

Henningson [6]. We analyze the eigenvalue and eigenvector derivative for the348

stability analysis of the plane Poiseuille flow. The linear stability analysis349

is the foundation of the en-based laminar-turbulence transition prediction350

method proposed by [8]. For the plane Poiseuille flow, the mainstream ve-351

locity component U is found to352

U(y) = U0(1− y2), (34)

where U0 is the dimensionless flow speed at the midpoint of two infinite353

planes, y is the dimensionless coordinate perpendicular to the flow direction.354

The velocity profile of the flow is shown in Fig. 2.355
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Table 2: Verification of the RAD derivatives with the adjoint method and FD

Type Index RAD Adjoint FD

dfr/dAr (1, 1) 0.229556432543903 0.229556432543903 0.229556418318566
dfr/dAr (1, 2) 0.319488240798766 0.319488240798767 0.319488238531562
dfr/dAr (1, 3) 0.219681767737122 0.219681767737123 0.219681774993319

dfr/dAi (1, 1) 0.132865295735042 0.132865295735042 0.132865288549056
dfr/dAi (1, 2) 0.129506466458660 0.129506466458660 0.129506453561135
dfr/dAi (1, 3) 0.369950215573716 0.369950215573717 0.369950194922808

dfi/dAr (1, 1) −0.132865295735042 −0.132865295735042 −0.132865295654483
dfi/dAr (1, 2) −0.129506466458660 −0.129506466458660 −0.129506453561135
dfi/dAr (1, 3) −0.369950215573716 −0.369950215573717 −0.369950205580949

dfi/dAi (1, 1) 0.229556432543903 0.229556432543903 0.229556462727487
dfi/dAi (1, 2) 0.319488240798766 0.319488240798767 0.319488250966060
dfi/dAi (1, 3) 0.219681767737122 0.219681767737122 0.219681794533244

x

y

y = 1

y = −1

U0

Figure 2: Plane Poiseuille flow

The stability of the flow is captured using Orr–Sommerfeld and Squire’s356

equations. They are defined as357 [
−iLOS 0
βU ′ −iLSQ

] [
ṽ
η̃

]
= λ

[
k2 −D2 0

0 1

] [
ṽ
η̃

]
, (35)

where the eigenvalue is λ, the eigenvector is composed of vertical velocity358

perturbation component ṽ and vortex perturbation component η̃, D is a359

differentiation operator for ∂(·)/∂y, k =
√
α2 + β2 is the wave number, and360
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α and β are wave numbers in x and z directions, respectively. The operators361

LOS and LSQ are coefficients of the Orr–Sommerfeld and Squire’s equations.362

They are defined as363

LOS = iαU(k2 −D2) + iαU ′′ +
1

Re

(
k2 −D2

)2
,

LSQ = iαU +
1

Re

(
k2 −D2

)
,

(36)

where Re is the Renoylds number. For more details about the equation364

definition, see [6, Chapter 3].365

Following Schmid and Henningson [6, Chapter 3], we discretize Eq. (35)366

using a spectral collocation method based on Chebyshev polynomials. Then,367

we can write the eigenvalue problem in the following form368

Kφφφ = λMφφφ, (37)

where K is related with the coefficient matrix the left-hand side of Eq. (35),369

M is related with the right-hand side, φφφ is the first eigenvector, and λ is the370

first eigenvalue. For the test case with Re = 10000, α = 1, and β = 0, the371

eigenvalue distribution of this problem is as plotted in Fig. 3. We want to372

compute the following derivatives:373

df

dK
,

df

dM
(38)

where we define374

f = cᵀ1φφφ+ c2λ. (39)

The constants c1 and c2 are set to375

c1 =

1 + i
...

1 + i

 , c2 = 1. (40)
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ωi
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S

A

Figure 3: Orr–Sommerfeld spectrum of plane Poiseuille flow for Re = 10000, α = 1, and
β = 0. We have ω = iλ. The mode at ωr ≈ 0.2375 is slightly unstable. A, P, and S are
three branches of the eigenvalues.

Solving for the adjoint variables and computing the total derivative,376

dfr

dKr
= −

∂r

∂Kr

ᵀ

ψψψr,
dfr

dKi
= −

∂r

∂Ki

ᵀ

ψψψr,
dfi

dKr
= −

∂r

∂Kr

ᵀ

ψψψi,
dfi

dKi
= −

∂r

∂Ki

ᵀ

ψψψi,

dfr

dMr
= −

∂r

∂Mr

ᵀ

ψψψr,
dfr

dMi
= −

∂r

∂Mi

ᵀ

ψψψr,
dfi

dMr
= −

∂r

∂Mr

ᵀ

ψψψi,
dfi

dMi
= −

∂r

∂Mi

ᵀ

ψψψi.

(41)

Using the results given in Eq. (23), we compute the total derivatives using377

the adjoint method.378

We compare our adjoint results with FD results for the selected entries of379

the matrices K and M in Table 3. Most of the adjoint results agree with FD380

results by 5 to 6 digits except for the derivatives close to zero. This verifies381

our proposed adjoint formulas.382

5. Conclusion383

In this paper, we developed an adjoint method for complex standard384

eigenvalue and generalized eigenvalue problems and a RAD formula for the385

eigenvalue derivative. The proposed adjoint method requires fewer function386
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evaluations than the forward methods, such as FD and the direct methods,387

for problems with more design variables than functions of interest. This is388

a critical advantage for PDE-constrained gradient-based optimization with389

the eigenvalue or the eigenvector, where there are usually more design vari-390

ables than functions of interest. One potential application is the aerody-391

namic shape optimization with transition modeled using the eN method,392

which requires differentiating a generalized eigenvalue problem for derivative393

computation. We compared the proposed derivative methods with FD ap-394

proximations. We achieved a 5 to 6 digit match of these two methods for395

both eigenvalue and generalized eigenvalue problems.396
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Appendix A. Proof of that the eigenvalue as a function of the564

matrix is analytic565

Theorem 1. For complex matrix A ∈ Cn×n with distinctive eigenvalues,566

λi 6= λj,∀i, j, i 6= j, we have λi, ∀i, is an analytic function of A.567

Proof:. First, we construct the characteristic polynomial, p(x), of a matrix,568

A,569

p(x) = xn + cn−1(A)xn−1 + · · ·+ c0(A), (A.1)
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where ci(A) ∈ C, i = 1, . . . , n − 1, are coefficients dependent on the matrix570

A. The eigenvalues are the roots of the characteristic polynomial, p(x) = 0.571

It can also be shown that the coefficients, ci(A) ∈ C, i = 1, . . . , n − 1,572

are analytic function of the coefficient matrix A. Thus, by the composition573

property of the analytic function, we only need to show that any root is an574

analytic function of the coefficients, ci, i = 1, . . . , n − 1, and then, we know575

that any root is indeed an analytic function of the matrix A.576

We apply the following lemma.577

Lemma 2. (Brillinger [54]) The distinct roots of an n-th degree complex578

polynomial are analytic functions of the coefficients in the region where the579

roots retain their various multiplicities.580

As long as we show that the roots retain their multiplicities, then we know581

it is analytic.582

Now we show the roots retain their multiplicities. It can be shown that583

the roots are continuous function of the coefficients, ci, i = 1, . . . , n − 1.584

Because ci, i = 1, . . . , n− 1, is also continuous with respect to A. It follows585

that the roots are continuous with respect to A. We measure the minimum586

distance between the distinct roots587

ε0 = min
i,j,i6=j

|λi − λj|, (A.2)

where ε0 > 0 because the assumption of all distintive eigenvalues. Then,588

due to continuity, with ε = ε0/4, we can pick a positive scalar, δ, such that,589

∀Â ∈ Cn×n, |Â−A| < δ, we have590

|λ̂i − λi| ≤ ε, i = 1, . . . , n, (A.3)

where Â is a perturbed coefficient matrix, and λ̂i are the corresponding591

perturbed eigenvalues. By construction, we have592

λ̂i 6= λ̂j,∀i, j, i 6= j. (A.4)

This is because if there is indeed a pair, i 6= j, such that λ̂i = λ̂j, we then593
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have594

|λi − λj|
=|(λi − λ̂i)− (λj − λ̂j) + (λ̂i − λ̂j)|
=|(λi − λ̂i)− (λj − λ̂j)|
≤|(λi − λ̂i)|+ |(λj − λ̂j)|
≤ε0

4
+
ε0
4

=
ε0
2
< ε0.

(A.5)

This is a contradiction595

|λi − λj| < ε0 = min
i,j,i6=j

|λi − λj|. (A.6)

Thus, in a small neighborhood of A specified by δ, the eigenvalues retain596

their multiplicities, in this case, one for all the eigenvalues. This finishes the597

proof that any eigenvalue is an analytic function of the coefficient matrix, A.598

�599

Appendix B. Notation conventions600

The vectorization operator vec (·) is defined as follows,601

(vec (A))i×(n2−1)+j = Aij, i = 1, . . . , n1, j = 1, . . . , n2, (B.1)

where A ∈ Rn1×n2 , vec : Rn1×n2 → Rn1n2 , and the subscript indicates the602

index of an element from the matrix, A, or the vector, vec (A). This linear603

operation transforms a matrix into a vector, which simplifies matrix deriva-604

tive notation and computation. The inverse vectorization operator vec−1 (·)605

is the inverse operator for vec (·) defined as,606

vec−1 (vec (A)) = A, (B.2)

for arbitrary matrix A. As a special case, when the vectorization operator607

or the inverse vectorization operator is operating on a vector, we obtain the608

vector itself, i.e.,609

vec (a) = a,

vec−1 (a) = a,
(B.3)

where a ∈ Rn3 is an arbitrary vector.610
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The following convention is used when writing a derivative involving ma-611

trices in this paper. For (∂A/∂B)ᵀA, where A ∈ Rn1×n2 , and B ∈ Rn2×n3 .612

Using the vectorization notation, (∂A/∂B)ᵀA is a simplified notation of the613

following operation,614

vec−1
((

∂vec (A)

∂vec (B)

)ᵀ
vec
(
A
))
∈ Rn2×n3 . (B.4)

Appendix C. Trace identities615

The following matrix trace identities are used in the remainder of the616

appendices [37, 55]:617

Tr(AB) = Tr(BA)

Tr(A + B) = Tr(A) + Tr(B).
(C.1)

Appendix D. Dot product identity for an analytic complex func-618

tion619

It is well-known for a real function that the following dot product identity620

holds for function f(w) [37]621

Tr(fᵀḟ) = Tr(wᵀẇ). (D.1)

We find that, for a complex analytic function, i.e., f(w) is analytic, w ∈622

Cmw , f ∈ Cmf , where mw,mf are the dimensions of the vectors, similar results623

hold624

Tr(f∗ḟ) = Tr(w∗ẇ). (D.2)

In this case, we apply a conjugate transpose instead of a transpose on the625

reverse seed. We will prove this result.626

We first expand the seeds of f and w into real and imaginary parts. Here,627

the “�̇” specifies the accumulated derivative in a FAD mode, and “�” specify628

it in a RAD mode. For the conventions of AD, such as seeds, we refer the629

reader to [37, 32, 49].630

ḟ = ḟr + iḟi, ẇ = ẇr + iẇi,

f = f r + if i, w = wr + iwi.
(D.3)
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Then, the LHS of Eq. (D.2) can be written as631

(LHS) Tr
(
fᵀr ḟr + fᵀi ḟi

)
+ iTr

(
−fᵀi ḟr + fᵀr ḟi

)
=Tr

(
fᵀr

(
∂fr
∂wr

ẇr +
∂fr
∂wi

ẇi

)
+ fᵀi

(
∂fi
∂wr

ẇr +
∂fi
∂wi

ẇi

))
+ iTr

(
−fᵀi

(
∂fr
∂wr

ẇr +
∂fr
∂wi

ẇi

)
+ fᵀr

(
∂fi
∂wr

ẇr +
∂fi
∂wi

ẇi

))
.

(D.4)
Going from the first equation to the second, we use the definition of the632

forward seeds.633

Then, for the RHS, similarly, we have634

(RHS) Tr (wᵀrẇr + wᵀi ẇi) + iTr (−wᵀi ẇr + wᵀrẇi)

=Tr

((
∂fr
∂wr

ᵀ

fr +
∂fi
∂wr

ᵀ

fi

)ᵀ
ẇr +

(
∂fr
∂wi

ᵀ

fr +
∂fi
∂wi

ᵀ

fi

)ᵀ
ẇi

)
+ iTr

(
−
(
∂fr
∂wi

ᵀ

fr +
∂fi
∂wi

ᵀ

fi

)ᵀ
ẇr +

(
∂fr
∂wr

ᵀ

fr +
∂fi
∂wr

ᵀ

fi

)ᵀ
ẇi

)
.

(D.5)
Now, we show that the LHS and the RHS are actually equal to each other,635

which proves the theorem. The real parts of LHS and RHS are apparently636

equal. For the imaginary parts, we need to apply the Cauchy–Riemann637

condition that is satisfied because the function is analytic,638

∂fr
∂wr

=
∂fi
∂wi

,

∂fr
∂wi

= − ∂fi
∂wr

.

(D.6)

Using the Cauchy–Riemann condition, we can convert all the partial deriva-639

tives in the imaginary parts for LHS and RHS.640

(Im (LHS)) Tr

(
−fᵀi

(
∂fr
∂wr

ẇr −
∂fi
∂wr

ẇi

)
+ fᵀr

(
∂fi
∂wr

ẇr +
∂fr
∂wr

ẇi

))
(Im (RHS)) Tr

(
−
(
− ∂fi
∂wr

ᵀ

fr +
∂fr
∂wr

ᵀ

fi

)ᵀ
ẇr +

(
∂fr
∂wr

ᵀ

fr +
∂fi
∂wr

ᵀ

fi

)ᵀ
ẇi

)
.

(D.7)
They are equal. Thus, we conclude that Eq. (D.2) holds.641
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Appendix E. Derivation of Eq. (15)642

First, we present the derivation of the FAD formula. The classic complex643

eigenvalue derivative found by Magnus [38], as a direct extension of its real644

counterpart [25], can be derived as follows645

Ȧφφφ+ Aφ̇φφ = λ̇φφφ+ λφ̇φφ. (E.1)

For more details of the seed definition in the context of AD, we refer the646

reader to [32, 49]. Then, we premultiply Eq. (E.1) with its corresponding647

conjugate transpose left eigenvector φ̃φφ defined by Eq. (14). We have648

φ̃φφ
∗
Ȧφφφ+ φ̃φφ

∗
Aφ̇φφ = λ̇φ̃φφ

∗
φφφ+ λφ̃φφ

∗
φ̇φφ,

⇒φ̃φφ∗Ȧφφφ+ λφ̃φφ
∗
φ̇φφ = λ̇φ̃φφ

∗
φφφ+ λφ̃φφ

∗
φ̇φφ,

(E.2)

where going from the first to the second equation, we apply Eq. (14). Can-649

celing identical terms from both sides, we have650

λ̇ =
φ̃φφ
∗
Ȧφφφ

φ̃φφ
∗
φφφ
. (E.3)

Next, we derive the RAD formula using the proposed complex dot product651

identity shown in Appendix C. Using Eq. (D.2), we have652

Tr
(
A∗Ȧ

)
= Tr

(
λ∗λ̇
)
. (E.4)

Inserting Eq. (E.3) into Eq. (E.4), and using the second trace identity from653

Eq. (C.1) we have,654

Tr
(
A∗Ȧ

)
= Tr

(
λ∗
φ̃φφ
∗
Ȧφφφ

φ̃φφ
∗
φφφ

)
= Tr

(
λ∗

φ̃φφ
∗
φφφ
φφφφ̃φφ
∗
Ȧ

)
. (E.5)

Since the equation mush hold for arbitrary Ȧ we have,655

A =
λ

φφφ∗φ̃φφ
φ̃φφφφφ∗. (E.6)

Thus, to obtain the derivative of the real part of λ, i.e., dλr/dAr and656
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dλr/dAi, we simply seed λ = 1. We then have the following results657

dλr
dAr

= Re

(
φ̃φφφφφ∗

φφφ∗φ̃φφ

)
,

dλr
dAi

= Im

(
φ̃φφφφφ∗

φφφ∗φ̃φφ

)
,

(E.7)

The remaining two partial derivatives of the imaginary parts, dλi/dAr and658

dλi/dAi, can be obtained using the Cauchy–Riemann condition (see Eq. (D.6))659

dλi
dAr

= − dλr
dAi

,

dλi
dAi

=
dλr
dAr

.

(E.8)

Equation (E.7) then fully determines the derivatives.660

Notice that the expression is independent of normalization condition of661

both φφφ and φ̃φφ. For example, if some other normalization condition is applied,662

the right and left eigenvectors are scaled and rotated to the following new663

eigenvectors664

φφφ = φφφ0αre
iθr ,

φ̃φφ = φ̃φφ0αle
iθl .

(E.9)

Here, φφφ and φφφ0 are the new and original right eigenvectors, respectively, φ̃φφ665

and φ̃φφ0 are the new and original left eigenvectors, respectively, αr and αl are666

scaling factors for the right and left eigenvector, respectively, and θr and θl667

are rotation angles for the right and left eigenvector, respectively. Inserting668

Eq. (E.9) into Eq. (E.7), we have669

dλ

dA
=
φ̃φφφφφ∗

φφφ∗φ̃φφ

=
αlαre

iθle−iθrφ̃φφ0φφφ
∗
0

αrαle−iθreiθlφφφ
∗
0φ̃φφ0

=
φ̃φφ0φφφ

∗
0

φφφ∗0φ̃φφ0

.

(E.10)
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Thus, the result is independent of the normalization condition.670

Appendix F. Relation between Eq. (10) and Eq. (15)671

The derivative of dλr/ dAr and dλr/ dAi can be obtained by setting672

f = λr, (F.1)

and solve Eq. (10). The solution of the adjoint equation is found to be673

ψψψ =


ψψψmain,r

ψψψmain,i

ψψψm
ψψψp

 =


ur
ui
0
0

 , (F.2)

where u = ur + iui is a left eigenvector and satisfies the following normal-674

ization condition675

φφφ∗u = −1. (F.3)

By applying the adjoint solution ψψψ in Eq. (12) and the respective result in676

Eq. (8) we obtain,677

dλr
dAr

= −urφφφᵀr − uiφφφ
ᵀ
i

dλr
dAi

= urφφφ
ᵀ
i − uiφφφ

ᵀ
r .

(F.4)

Now we show that Eq. (F.4) is indeed equal to Eq. (E.7). Since for678

Eq. (E.7), we show that we can pick arbitrary normalization condition. Thus,679

we set680

φ̃φφ = u. (F.5)

Due to Eq. (E.7), we have681

dλr
dAr

= Re

(
uφφφ∗

φφφ∗u

)
= Re

(
uφφφ∗

−1

)
= −urφφφᵀr − uiφφφ

ᵀ
i ,

dλr
dAi

= Im

(
uφφφ∗

φφφ∗u

)
= Im

(
uφφφ∗

−1

)
= urφφφ

ᵀ
i − uiφφφ

ᵀ
r ,

(F.6)

Thus, we conclude that the eigenvalue derivative formula is a special case of682

the more general adjoint-based formula.683
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Appendix G. Derivation of Eq. (12)684

In this section, we provide the derivation for (∂r/∂Ar)
ᵀψψψ. The derivation685

for (∂r/∂Ai)
ᵀψψψ is similar and is therefore omitted. As mentioned in the main686

text of the paper, we evaluate this product using RAD. Here, ψψψ can be taken687

as a seed for r, i.e., ψψψ is an instance of r. We use the following identity for688

the derivation,689

Tr(rᵀṙ) = Tr(AᵀrȦr). (G.1)

Before proceeding with deriving the RAD formulation, we derive the FAD690

expressions. We differentiate Eq. (7) to obtain the partial derivative of r with691

respect to Ar. The FAD formula is given as692

ṙ =


Ȧrφφφr
Ȧrφφφi

0
0

 . (G.2)

Now we derive r. By taking ψψψ as a reverse seed, we obtain693

Tr(rᵀṙ) = Tr(ψψψᵀṙ). (G.3)

We now substitute in the FAD formula Eq. (G.2), followed by expanding the694

ψψψ =
[
ψψψᵀmain,r ψψψᵀmain,i ψψψᵀm ψψψᵀp

]ᵀ
, we obtain,695

Tr(ψψψᵀṙ) = Tr

ψψψᵀ

Ȧrφφφr
Ȧrφφφi

0
0


 = Tr

(
ψψψᵀmain,rȦrφφφr +ψψψᵀmain,iȦrφφφi

)
. (G.4)

Now, using the first identity from Eq. (C.1), and then factoring out similar
terms, we obtain

Tr
(
ψψψᵀmain,rȦrφφφr +ψψψᵀmain,iȦrφφφi

)
= Tr

(
φφφrψψψ

ᵀ
main,rȦr + φφφiψψψ

ᵀ
main,iȦr

)
(G.5)

= Tr
((
φφφrψψψ

ᵀ
main,r + φφφiψψψ

ᵀ
main,i

)
Ȧr

)
. (G.6)
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By Eq. (G.1), we can then write696

Tr
((
φφφrψψψ

ᵀ
main,r + φφφiψψψ

ᵀ
main,i

)
Ȧr

)
= Tr(AᵀrȦr). (G.7)

Since the equation holds for arbitrary Ȧr, comparing and matching the LHS697

and RHS we conclude that698

Ar = ψψψmain,rφφφ
ᵀ
r +ψψψmain,iφφφ

ᵀ
i , (G.8)

This finishes our derivation of Eq. (12).699
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